1. A company has factories at F1, F2 and F3 which supply warehouses at W1, W2 and W3 and W4. Weekly factory capacities are 100, 125 and 75 units. Weekly warehouse requirements are 70, 90, 80 and 60 units respectively. Units shipping cost (in rupees) are as follows :
|
Factory |
Warehouse |
|
|||
|
W1 |
W2 |
W3 |
W4 |
SUPPLY |
|
|
F1 |
6 |
5 |
1 |
3 |
100 |
|
F2 |
4 |
8 |
7 |
2 |
125 |
|
F3 |
6 |
3 |
9 |
5 |
75 |
|
Demand |
70 |
90 |
80 |
60 |
|
Determine the optimum distribution for the company to minimize the shipping cost. Use NWCR to obtain Initial Solution
2. Solve the following transportation problem for minimum cost by taking initial feasible solution by North West corner rule and Vogel’s approximation method. The entries in the matrix indicate the cost in rupees of transporting a unit from a particular source to a particular destination.
|
Origin |
Destination |
Supply |
|||
|
1 |
2 |
3 |
4 |
||
|
1 |
10 |
8 |
11 |
7 |
20 |
|
2 |
9 |
12 |
14 |
6 |
40 |
|
3 |
8 |
9 |
12 |
10 |
35 |
|
Requirement |
16 |
18 |
31 |
30 |
95 |
3. A company is spending ` 12000 /- on transportation of finished goods from 3 plants to four distribution centers every month. The supply and demand for finished goods every month with unit cost of transportation are given in the following table
|
Plants / Distribution center |
D1 |
D2 |
D3 |
D4 |
Monthly Supply |
|
F1 |
20 |
30 |
50 |
15 |
7 |
|
F2 |
70 |
35 |
40 |
60 |
10 |
|
F3 |
40 |
12 |
60 |
25 |
18 |
|
Monthly demand |
5 |
8 |
7 |
15 |
|
- Find the optimal solution to give minimum cost schedule to transport finished goods to market
- What can be the maximum saving every month by optimal scheduling?
4. The following table gives the data regarding the transportation timings from 4 different origins to 4 different destinations. The available material to be transported from 4 origins are 5,7,8,10 thousand tones, whereas the intake capacity of different destinations are 10,5,10,5 thousand tones respectively. Using appropriate method, find the basic feasible solution to this transportation problem and also obtain the optimum solution so as to minimize transportation timings:
|
|
|
Destination |
|||
|
Dl |
D2 |
D3 |
D4 |
||
|
Origin
|
O1 |
6 |
7 |
3 |
4 |
|
O2 |
7 |
9 |
1 |
2 |
|
|
O3 |
6 |
5 |
16 |
7 |
|
|
O4 |
18 |
9 |
10 |
2 |
|
5. Four warehouses with capacities of 85, 35, 50 and 45 tons were receiving the materials from 3 factories with the supply capacity as 70, 55 and 90 tons on regular basis. The transportation cost per ton from factories to warehouses are given in the following table:
|
Factory |
Warehouse |
|||
|
1 |
2 |
3 |
4 |
|
|
I |
6 |
1 |
9 |
3 |
|
II |
11 |
5 |
2 |
8 |
|
III |
10 |
12 |
4 |
7 |
A feasible solution states that from Factory I, 25 tons have to be transported to warehouse 3 and 45 tons to warehouse 4. Similarly 30 tons and 25 tons were transported from Factory II to Warehouse1 and warehouse 3 respectively. However, from Factory III, 55 tons and 35 tons were transported to warehouse 1 and warehouse 2 respectively. Is this transportation schedule optimum? If not modify it and obtain optimum solution and optimal cost.
2 Comments